نگاشت های حافظ عملگرهای رتبه یک و نگاشت های حافظ تعامد

thesis
abstract

توصیف و دسته بندی نگاشت های پوشای خطی بین جبرهای استاندارد عملگرها که حافظ تعامد برد/دامنه باشند.

similar resources

نگاشت های تقریبا حافظ تعامد روی *c- مدول ها

در این پایان نامه به مطالعه ی نگاشت های حافظ تعامد و تقریبا حافظ تعامد در - مدول های فضای ضرب داخلی می پردازیم . درحالت خاص اگر a ،w,v - مدول های ضرب داخلی روی *c- جبر a باشند هر مضرب اسکالر از یک ایزومتری a- خطی، یک نگاشت حافظ تعامد a- خطی خواهد بود . عکس این مطلب در حالت کلی برقرار نمی باشد ولی در حالتی که aشامل k(h) باشد عکس آن برقرار خواهد بود) k(h) بیانگر c* - جبر همه عملگرهای فشرده روی یک...

15 صفحه اول

نگاشت های حافظ رتبه 1 روی *c- مدول های هیلبرت

یک *c -مدول هیلبرت روی یک *c-جبر a یک مدول چپ m همراه با یک ضرب داخلی روی a است که در مولفه ی اول خطی ودر مولفه دوم مزدوج خطی است به طوری که m با نرم تعریف شده از ضرب داخلی یک فضای باناخ است.مساله حافظ رتبه یک مساله اساسی در مطالعه مسائل حافظ خطی است. *c-مدول های هیلبرت ابتدا توسط کاپلانسکی در سال 1953 به منظور اثبات درونی بودن اشتقاق های روی *aw-جبرها به کار گرفته شد.او ضرب داخلی فضاهای هیلبرت...

15 صفحه اول

نگاشت های حافظ جفت عملگرهای با حاصلضرب تصویر

فرض کنیم b(h) جبر عملگرهای کراندار روی فضای هیلبرت مختلط h با dim h > 1 باشد.ثابت می کنیم نگاشت پوشای ? روی b(h) حافظ تصویر ضرب ناصفر است اگر و فقط اگر یک عملگر یکانی یا پادیکانی u روی h و ثابت c با شرط c^2 = 1 موجود باشند که برای هر a عضو b(h) داشته باشیم ?(a) = cu^*au. نتیجه مشابهی برای نگاشت هایی که ضرب سه تایی جردن را حفظ می کنند بدست می آوریم.

15 صفحه اول

نگاشت های تقریباً حافظ طیف

فرض کنیم x و y فضاهای باناخ ابربازتابی و (b(x و (b(y به ترتیب جبرهای باناخ عملگرهای خطی و کراندار روی x و y باشند. اگر (p? b(x) -> b(y یک نگاشت خطی و دوسویی تقریباً حافظ طیف باشد، در این صورت p یک عملگر تقریباً ضربی یا یک عملگر تقریباً پادضربی است. علاوه براین، اگر y = x یک فضای هیلبرت تفکیک پذیر باشد، چنین نگاشتی اختلال کوچکی از یک خودریختی یا یک پادخودریختی خواهد شد. همچنین، پیوستگی خودکار چنین ...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023